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A microgap at the tooth-restoration interface

is inevitable. This major disadvantage of

adhesive restoration can be observed clini-

cally by marginal staining and demonstrated

in vitro by microleakage.1

Microleakage allows bacterial penetration,

which may result in secondary caries leading

to pulp pathology and failure of a restoration.2

Effective and long-lasting antibacterial prop-

erty of composite resin–restorative material

may eliminate bacterial biofilm formation at

the interface and thus increase restoration

longevity. Numerous scientific publications

investigating the antibacterial property of

restorative materials indicate the importance

of this property.3–15 Flowable composite resin

materials are advocated for use in Class 5

restorations, open-margin repairs, fissure

sealing, and provision of an elastic stress-

absorbent layer underneath a restoration to

prevent microleakage and postoperative sen-

sitivity, as well as to cancel undercuts in

crown, onlay, and inlay preparations.16–23

The most common technique for assess-

ing antibacterial properties of dental materi-

als is the agar diffusion test (ADT), which

enables measurement of the activity of solu-

ble ingredients of the tested material in the

surrounding medium, indicated by an inhibi-

tion halo.7,24 This, however, does not meet the
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gold standard for nonsoluble, nondegrad-

able, permanent dental restorative materi-

als.9,24

Weiss et al developed a direct contact test

(DCT) to overcome these limitations and fur-

ther supply quantitative information by

employing direct contact between the mate-

rial and microorganism.25 This technique is

far more suitable for antibacterial assess-

ment of nonsoluble, nondegradable dental

materials.9,12,25

The purpose of this study was to conduct

an in vitro quantitative assessment of the anti-

bacterial properties of 4 commercial flow-

able composite resins by DCT and to com-

pare the results with the most commonly

used ADT.

METHOD AND MATERIALS

Tested materials
The following commercially available restora-

tive materials were tested: Aeliteflo, flowable

composite resin (Bisco); Filtek Flow, flowable

composite resin (3M ESPE); Dyract Flow,

flowable compomer (Dentsply); and Tetric

Flow, flowable composite resin (Ivoclar

Vivadent).

Tested microorganism
Streptococcus mutans is considered the pri-

mary etiologic agent of caries26 and widely

used to test the antibacterial properties of

restorative materials.4–6,26 Bacitracin-resistant

S mutans #27351M was grown aerobically

from a frozen stock culture in brain-heart

infusion broth (BHI) (DIFCO) containing 0.5%

bacitracin for 48 hours at 37°C.

Experimental design
The present study was conducted using ADT

and DCT. The ADT was performed using

mitis salivarius agar plates (Hy-labs). Three

plates were inoculated with 400 µL of viable

bacteria suspension using a Drigalski stick.

Duplicate samples of each tested material

were placed in 8 prepunched cylindrical

holes, measuring 3 mm in diameter by 4 mm

deep, and immediately polymerized from

both sides of the plate using visible light cure

(Elipar Trilight, 3M ESPE) for 20 seconds

from each direction. The plates were then

incubated for 48 hours at 37°C. The bacteri-

al lawn was visually inspected for inhibition

zones, and these were measured in 2 per-

pendicular axes using an electronic caliper

(Mitutoyo).

The DCT was performed using a 96-well

flat-bottom microtiter plate (Nunc). The anti-

bacterial properties of the tested materials

were examined immediately after polymeriza-

tion. Similar experimental procedures were

performed, allowing the tested materials to

Fig 1 Experimental design of direct contact test (DCT) performed in a 96-well flat bottom microtiter plate.
OD, optical density.
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age in phosphate-buffered saline (PBS) and

0.5% bacitracin for 24 hours and 7 days after

polymerization before being assayed by

DCT. Each material was tested in octet.

The DCT relies on turbidimetric determi-

nation of bacterial growth in a 96-well

microtiter plate and is described in detail by

Matalon et al.9

The experimental setup is shown in Fig 1.

A 96-well flat-bottom microtiter plate was

held vertically so that the base of the well was

perpendicular to the floor. Using a special

template (surface area of 21 mm), the side-

walls of the 8-well test group were evenly

coated with the tested materials. The sam-

ples were polymerized upon placement on

the sidewall of the well in compliance with

the manufacturers’ instructions. Special care

was taken to avoid the flow of the tested

material to the bottom of the well (ie, the base

of the well) so as not to interfere with optical

readings later in the experiment. A suspen-

sion of 10 µL growth medium containing 106

viable bacteria, determined by serial dilution

and viable count, was introduced in direct

contact with the samples, with the plate

remaining in the vertical position, and

allowed to evaporate for 1 hour at 37°C. This

assured direct contact between the tested

material and the tested bacteria.

Consequently, the plate was horizontally

repositioned and 220 µL of BHI broth con-

taining 0.5% bacitracin was added to each

well and gently agitated for 2 minutes using a

Gyrotory Shaker Model G2 (New Brunswick

Scientific). 

The positive control consisted of 3 wells

such that identical bacterial inoculum was

placed on the sidewall of the uncoated wells

and processed as were the experimental

wells. The negative control consisted of 4

wells such that only uninoculated fresh medi-

um was added (with or without the tested

material). The plates were then incubated 

at 37°C in a temperature-controlled spec-

trophotometer (Versamax, Molecular Devices)

so that bacterial growth could be monitored

for 16 hours at 650 nm in 30-minute intervals.

Calibration experiments were performed

simultaneously in each microtiter plate to

obtain a comparative quantitative scale as

follows: Bacteria (106 colony-forming units)

were placed on each sidewall of 3 wells, and

250 µL of BHI broth was added. Consecutive

5-fold dilution transfer was performed into

6 sets of 3 wells. The mean OD (optical densi-

ty) measured in 3 wells simultaneously was

plotted on a growth curve.

In the DCT, each microtiter plate was set

up as an independent investigation with pos-

itive controls, negative controls, and calibra-

tion experiments.

The recorded data were plotted as semi-

logarithmic growth curves. The linear portion

of the curve, which correlates with the bacte-

rial growth rate, was extrapolated to repre-

sent a linear function. The slope of the line

represents the growth rate of the experimental

bacteria, and the y-intercept represents the

number of viable bacteria before incubation.

These parameters were analyzed using 2-way

analysis of variance (ANOVA) to examine the

Fig 2 Bacterial out-
growth immediately after
polymerization (1 hour) as
measured by changes in
optical density. The activity
of the tested materials was
compared to the positive
controls. Dyract Flow pres-
ents inhibition of bacterial
growth.
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correlation between time and material, as

well as 1-way ANOVA and Tukey multiple

comparison tests by means of SPSS 14 for

Windows (SPSS) (P = .001).

RESULTS

In the ADT, the only test material to demon-

strate an inhibitory halo in the bacterial lawn

was Dyract Flow. This halo measured 3.00 ±

0.12 mm in width in 2 perpendicular axes

(beyond the diameter of the sampled material).

The DCT was performed on 8 specimens

of each tested material. A regression line (R2)

was calculated on the linear portion of the

growth curve, which represents the logarith-

mic growth phase. The R2 of all growth

curves ranged from 0.91 to 0.99. Two-way

ANOVA showed a significant difference in

bacterial growth rate, both on different adhe-

sive materials (P < .001) and at different test-

ed time points (P < .001).

Immediately after polymerization, Dyract

Flow was the only material tested that

demonstrated potent antibacterial properties

compared with positive controls (Fig 2 and

Table 1). After aging for 24 hours or 7 days,

none of the tested materials possessed anti-

bacterial properties, and all were similar to

the controls (Fig 3 and Table 1).

Calibration growth curves are shown in

Fig 4. The optical density at any given time

correlates to the number of viable bacteria.

Every point on the curve is the mean optical

density of 3 wells. The curves indicate that

the effect of reducing the inoculum size

increases the lag until exponential growth

but not the generation time nor the ultimate

growth density.

DISCUSSION

This study evaluated the antibacterial proper-

ties of 4 commercially available flowable

composite resins.

Two methods were used to evaluate the

antibacterial properties: ADT and DCT. In this

study, both methods produced similar

Fig 3 Bacterial outgrowth 1
day after polymerization as
measured by changes in opti-
cal density. The activity of the
tested materials was com-
pared to positive controls. All
samples present similar
slopes and show no inhibi-
tion of bacterial growth.

Table 1 Bacterial growth rate after direct contact with tested samples

Time
Material Immediately 1 day 7 days

Control 0.045 ± 0.002 0.040 ± 0.003 0.038 ± 0.002
Aeliteflo 0.043 ± 0.007 0.041 ± 0.003 0.039 ± 0.007
Filtek Flow 0.042 ± 0.007 0.038 ± 0.008 0.031 ± 0.002
Tetric Flow 0.047 ± 0.003 0.039 ± 0.002 0.042 ± 0.004
Dyract Flow 0.0001 ± 0.00001 0.036 ± 0.002 0.041 ± 0.003
1-way ANOVA P < .001 No significant No significant

difference difference

Bacterial growth rate expressed by the slope of the linear portion of the growth curve. Values are the average of 3
experiments, 8 wells in each experiment. Vertical lines connect the values that do not differ significantly (Tukey
comparison). 
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results. Dyract Flow, a flowable compomer,

was the only one shown to have an antibac-

terial property.

The ADT test carried out for 48 hours after

polymerization indicated that this material

releases an antibacterial component into the

aqueous milieu. This observation could be

interpreted in part by the material’s solubility,

as indicated by the manufacturer’s test val-

ues (2.71 ± 0.42 µg/mm3, Dentsply Dyract

Flow portfolio). Nevertheless, this does not

concur with the characteristics of an ideal

restorative material.24

In the DCT, the same material was shown

to have antibacterial ability only immediately

after polymerization (P < .001), whereas after

24 hours and 7 days, no antibacterial effect

was found. The combined conclusion from

these methods of testing is that the flowable

compomer Dyract Flow contains a short sup-

ply of a component with antibacterial ability

that is released into the surrounding environ-

ment and disappears within a short period.

The combined methods allow differentia-

tion between antibacterial properties

dependent on the release of a component

into the surrounding area, and antibacterial

properties resultant on contact between the

bacterium and the material, as shown in pre-

vious studies.9,27,28 In this study, the DCT

enabled an estimation of the time frame in

which the antibacterial component was fully

released and the material lost its antibacteri-

al properties.

None of the other flowable composite

resins tested showed any antibacterial capa-

bility. These results are in accordance with

related findings on the effect that composite

resins have on bacterial growth.12,15,28–30

Compomers (polyacid-modified compos-

ite resins), a group of dental restorative 

materials, were developed to improve clinical

performance of conventional glass-ionomer

restorative materials. The claimed distinction

between composite resin materials and the

compomers is the “glass ionomeric” inherent

characteristics; dominant among them is the

release and uptake of fluoride.15,31 One could

argue that this is a reasonable explanation for

the results of the current study.

CONCLUSION

According to the results of this study, none of

the flowable materials tested possesses

effective long-term antibacterial ability.

Fig 4 Bacterial growth as
measured by changes in opti-
cal density. The optical density
at any given time correlates to
the number of viable bacteria.
Every point on the curve is the
mean optical density of a 3-
well set, taken simultaneously.
It is apparent that the constant
decrease in the primary num-
ber of bacteria (due to dilution)
does not affect the growth rate
or the final amount of viable
bacteria in the stationary
phase. Dilution by a factor of 5
resulted in a lag of about 1
hour in the exponential phase.
Starting with 106 (A) viable bac-
teria, the consequent curves
represent the outgrowth of 2 •
105, 4 • 104, 8 • 103, 16 • 102, 320,
64, 12.8 bacteria per well, B to H
respectively.
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