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a b s t r a c t

Objectives: To characterise the antibacterial effect of resin composite incorporating cross-

linked quaternised polyethyleneimine (QPEI) nanoparticles in relation to their distribution

in the bulk material.

Methods: The antibacterial effect of resin composite incorporating QPEI nanoparticle was

tested against various oral pathogens, including Enterococcus faecalis, Streptococcus mutans,

Actinomyces viscousus, Lactobacilus casei and whole saliva. Nanoparticle distribution in the

modified resin composite was assessed using X-ray photoelectron spectroscopy (XPS).

Additionally, the degree of conversion was recorded.

Results: Total bacterial inhibition was detected against all the tested pathogens following

direct contact with the outer surface of the modified resin composite. Similarly, the inner

surface of the modified resin composite caused total inhibition. Electron microscope images

showed bacterial death. XPS revealed surface I� ions on both the outer and the inner

surfaces of the modified composite. No I� ions were detected in the unmodified composite.

Nanoparticle distribution was higher on the inner surface of the modified composite. The

composite’s degree of conversion was unaffected by nanoparticle addition.

Clinical significance: QPEI nanoparticles represent a new generation of antibacterial nano-

particles which are highly promising in preventing bacterial recontamination when restor-

ing teeth.

# 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

In dentistry, surface coating with antibacterial materials is

challenging, as the oral environment offers harsh conditions

that may result in detachment or wear of the coating. Thus,

enhancement owing to antibacterial properties through full

material modification may be more durable.
* Corresponding author at: Department of Prosthodontics, Hebrew U
Jerusalem 91120, Israel. Tel.: +972 2 6776142; fax: +972 2 6429683.

E-mail address: nuritb@ekmd.huji.ac.il (N. Beyth).

Please cite this article in press as: Shvero DK, et al. Characterisation of the
particle distribution in resin composite. Journal of Dentistry (2014), http:

http://dx.doi.org/10.1016/j.jdent.2014.05.003
0300-5712/# 2014 Elsevier Ltd. All rights reserved.
Studies have shown higher bacterial accumulation on resin

composites relative to other materials such as amalgam and

glass ionomer.1,2 Resin composite materials are widely used in

tooth restoration, core buildup and in cementation due to their

benefits, including aesthetics and adhesion to tooth structure.3

However, the main drawback of resin composite-based

materials is marginal leakage, which may result in secondary

caries formation.4
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Table 1 – Bacterial strains used in the direct contact test.

Microorganisms Source Comments

Enterococcus

faecalis

Clinically isolated at

the Maurice and

Gabriela Goldschleger

School of Dental

Medicine, Tel Aviv

University, Israel

Streptomycin-

resistant

OD650 = 1

CFU/ml = 106

Streptococcus

mutans

ATCC 700610 OD650 = �1

CFU/ml = 106

Actinomyces

viscousus

ATCC43146

Lactobacillus

casei

ATCC334

From saliva Clinical isolate OD650 = 0.3

CFU/ml = 106
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In previous studies it was shown that incorporation of

ntibacterial quaternised polyethyleneimine (QPEI) nanopar-

icles in resin composites results in a potent and long-lasting

ntibacterial effect. The antibacterial compound is stable and

oes not leach out from the material into the surrounding

nvironment.5–7 To provide antibacterial properties, QPEI

anoparticles were incorporated into resin composites. These

articles most probably disrupt the passage of ions through

he bacterial membranes, leading to membrane destruction

nd death.5,8,9

Particle surface area size is an essential component in

anoscale materials.10 Specifically, particle surface area has a

ritical role when nanoparticles are used as antibacterial

gents. As particle size is reduced, the proportion of the atoms

ound on the surface interface is enhanced relative to the

roportion of the particle volume. This results in nanoscale

articles, which are likely to be more reactive than microscale

articles, thus generating a more efficient antibacterial effect

pon application.11,12 Unfortunately, alteration of the material

urface properties using nanoparticles may be compromised

ecause of the high tendency of the nanoparticles to

ggregate,5 resulting in a less effective surface antibacterial

ffect.13 However, to generate an efficient effect, their mode of

istribution in the bulk material is critical.2–6,12

The purpose of the present study was to characterise the

ntibacterial activity of QPEI against oral pathogens when

ncorporated in a resin composite material, in relation to the

istribution of the nanoparticles in the bulk material.

. Materials and methods

.1. Test materials

ynthesis was as previously described.7 Polyethylenimine

issolved in ethanol was reacted with dibromopentane under

eflux for 24 h. N-alkylation was conducted using octyl.

lkylation was carried out under reflux for 48 h, followed by

eutralisation with sodium bicarbonate for an additional 24 h

nder the same conditions. N-methylation was conducted using

ethyl iodide. Methylation was continued at 42 8C for 48 h,

ollowed by neutralisation with sodium bicarbonate for an

dditional 24 h. The supernatant obtained was decanted and

recipitated in double distilled water (DDW), washed with

exane and DDW and then freeze-dried. The average yield was

85% (mol/mol). Then the particles were washed with a 2%

olution of N-lauryl-sarcosine surfactant (NLS). A total 20 g of

repared QPEI nanoparticles was placed in a Buchner funnel,

sing a paper filter and a vacuum source. A 200 mlvolume of NLS

olution was allowed to pass through the nanoparticles under

acuum conditions. Treated nanoparticles were freeze-dried

vernight and a fine powder was obtained.

QPEI nanoparticles were incorporated in resin composite

3MTM ESPETM FiltekTM Supreme XTE Flowable Restorative, St.

aul, MN, USA). Material curing was preformed according to

he manufacturer’s instructions.

.2. Direct contact test (DCT)

he antibacterial effect was evaluated against various oral

athogens (the bacterial species aresummarised in Table 1) and
Please cite this article in press as: Shvero DK, et al. Characterisation of t
particle distribution in resin composite. Journal of Dentistry (2014), ht
against whole saliva bacteria (as approved by the Helsinki

Committee for Human Clinical Trials-HMO052511). Bacteria

were grown to 106 colony forming units (CFU)/ml in brain heart

infusion (BHI). The antibacterial effect of modified resin

composites incorporating QPEI nanoparticles was tested using

the direct contact test.14 Briefly, triplicate wells in a 96-well

microtiter plate were coated with resin composite incorporat-

ing QPEI nanoparticles (0%, 1% and 2% wt/wt). The plate was

then aged by adding to each well 250 ml PBS, which were

replaced every 48 hfor 1 month at 37 8C. At the end of theageing

period the plate was dried under sterile conditions and 10 ml of

tested bacterial suspension were placed on the surface of each

test group to allow direct contact. After an hour, growth

medium was added to each well and the plate was placed in a

spectrophotometer for 24 h. Optical density readings in each

well were recorded continuously every 20 min, with a 5 s mix

before each reading. Data were analysed using Kruskal-Wallis

One Way Analysis of Variance on Ranks.15

2.3. Inner and outer surface antibacterial effect

Discs (4.5 mm diameter � 4 mm height) incorporating 0% or

2% wt/wt QPEI nanoparticles were prepared using a silicone

template. The discs were then cut in the middle, using a sterile

scalpel. The test groups included: #1 – no added nanoparticles

(0%, outer surface); #2 – no added nanoparticles (0%, inner

surface); #3 – added nanoparticles (2%, outer surface); #4 –

added nanoparticles (2%, inner surface).

The discs were inserted in a 24-well microtiter plate (flat

bottom plate, Nunclon, Nunc, Denmark) and an Enterococcous

faecalis (E. faecalis) suspension (10 ml; OD650 nm of 0.5 � 105 CFU/

ml) was placed on the surface of each disc to test the

antibacterial effect of the inner or outer surface of the

material. The plate was incubated for 1 h at 37 8C. During this

period the suspension liquid evaporated and a thin layer of

bacteria was obtained, ensuring direct contact between all the

bacteria and the tested surface. E. faecalis placed on the surface

of the microtiter plate served as control.

After incubation, 1 ml of BHI was added to each well and

the microtiter plate was placed on a titermix for 5 min (450

RPM). A 660 ml volume was transferred from each well to a

fresh 96-microtiter plate and divided between three

wells (220 ml in each well). The plate was then placed in

a temperature-controlled microplate spectrophotometer
he antibacterial effect of polyethyleneimine nanoparticles in relation to
tp://dx.doi.org/10.1016/j.jdent.2014.05.003
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(VERSAmax, Molecular Devices Corporation, CA, USA), at 37 8C

with 5 s vortex mixing before each reading. Bacterial growth

was estimated by following changes in OD650 nm in each well

every 20 min for 14 h. Each point on the curve is the average

absorbance measured simultaneously in eight wells in the

same microtiter plate.

ANOVA was used for statistical analysis, followed by the

Tukey test as non-parametric tests showed similar results.15

2.4. Electronic microscopy

An E. faecalis suspension (1 ml; OD650 nm of 1 � 108 CFU/ml) was

placed in a glass tube containing 9 ml DDW or in a tube

containing 9 ml DDW with 5 mg/ml QPEI nanoparticles.

The tubes were placed on a titermix in a 37 8C incubator for

1 h. The specimens were then centrifuged and the pellet was

fixed with formaldehyde, gluteraldehyde, and osmium tetra-

oxide in cacodylate buffer, followed by dehydration with a

graded ethanol and Freon series, and coated with gold.

Specimens were observed using a high-resolution scanning

electron microscope (SEM) at magnifications of 20,000� and

40,000�. Similar samples were observed using Transmission

electron microscopy (TEM). The samples were fixed in

Karnovsky’s Fixative after 30 min incubation in a 37 8C

incubator. Post-fixation was carried out in osmium tetraoxide.

Specimens were dehydrated in graded ethanol and embedded

in epoxy resin. Then 70 nm thin sections were contrasted with

uranyl acetate and lead citrate. The slices were examined at

magnifications of 40,000� and 15,000�.

2.5. Nanoparticles distribution in modified resin
composite

Resin composite discs were prepared as described above and

analysed using X-ray photoelectron spectra (XPS). The XPS
Fig. 1 – Antibacterial activity of modified resin composites inco

evaluated in the presence of resin composite incorporating 1% 

Please cite this article in press as: Shvero DK, et al. Characterisation of the
particle distribution in resin composite. Journal of Dentistry (2014), http:
were recorded using a Kratos Axis Ultra spectrometer (Kratos

Analytical Ltd., Manchester, UK), with an Al Ka monochro-

matic radiation X-ray source (1486.7 eV). The emission current

was set at 15 mA and the anode high voltage at 15 kV.

All XPS spectra were collected with a take-off angle of 908

(normal to analyser), the vacuum condition in the chamber

was 1.9 � 10–9 Torr. The survey XPS spectra were acquired

with pass energy of 160 eV and 1 eV step size. High-resolution

spectra were collected for C 1s, O 1s, Si 2p, Zr 3d and I 3d levels,

with a pass energy of 20 eV and 0.1 ev step size. The binding

energies were calibrated using C 1s peak energy as 285.0 eV.16

The collected data were analysed with a Casa XPS (Casa

Software Ltd., Center for Nanoscience and Nanotechnology,

The Hebrew University of Jerusalem, Israel) and a Vision Data

processing program (Kratos Analytical Ltd., Center for

Nanoscience and Nanotechnology, The Hebrew University

of Jerusalem, Israel).

I� ions were selected as indicators of the presence of the

QPEI nanoparticles due to the fact that I� ions are found solely

in the QPEI nanoparticles, and not in the resin composite.

2.6. Degree of conversion (%DC) of modified resin
composite

The number of double carbon links present in the mono-

mers, which are converted into single links to form the

polymeric chain during the polymerisation process, is

called degree of conversion. Monomer conversion of the

double carbon –carbon bonds was tested using a Fourier

Transform Infra-Red (FTIR) spectrometer with an Attenuat-

ed Total Refraction (ATR) device. Resin composite samples

with QPEI concentrations of 0%, and 2% w/w were prepared

as above. A thin layer of approximately 1.5 mm was placed

on top of the ATR device of the FTIR spectrometer (NicoletTM

iSTM10 FT-IR Spectrometer, Thermo Electron Scientific LLC .,
rporating QPEI nanoparticles. Microorganism growth was

or 2% wt/wt QPEI nanoparticles after 1 month using DCT.
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adison, WI USA). First, spectra of un- polymerised material

ere taken as a baseline for further DC calculations. The

aterial sample was irradiated, with a dental light curing

ED unit for 20 s according to the manufacturer’s instruc-

ions and then the spectra were collected. The material

ample was allowed to polymerise for an additional 10 min.

pectra were taken every 60 s. The DC was calculated by

ividing the peak heights of the double carbon –carbon

onds at wavenumber 1637 cm�1 of the final polymerised

tate by similar peaks in the baseline spectra. The peaks

ere normalised by aromatic double carbon –carbon peaks

t wavenumber 1608 cm�1. This is to eliminate other factors

hat may affect peak height variability, such as liquid to

olid state transformation and shrinkage that is likely to
ig. 2 – Antibacterial activity of the inner portion of modified 

rowth following direct contact with the resin composite disc

omposite was modified by incorporating 2% wt/wt QPEI nan

Please cite this article in press as: Shvero DK, et al. Characterisation of t
particle distribution in resin composite. Journal of Dentistry (2014), ht
occur during polymerisation of acrylates and methacry-

lates. The formula used for the DC calculation is:

%DC ¼ 100 � 1 � Að1638 cm�1Þ final=Að1608 cm�1Þ final
Að1638 cm�1Þ initial=Að1608 cm�1Þ initial

� �

3. Results

The antibacterial properties of the resin composite were

evaluated and compared in vitro with those of modified

composite incorporating QPEI nanoparticles.

Incorporation of QPEI nanoparticles resulted in a broad

spectrum (p < 0.05) antibacterial effect against all the tested
214

resin composites incorporating QPEI nanoparticles. E. faecalis

s’ inner portion and outer surface was tested. The resin

oparticles.

he antibacterial effect of polyethyleneimine nanoparticles in relation to
tp://dx.doi.org/10.1016/j.jdent.2014.05.003
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microorganisms at both tested concentrations (1% and 2% wt/

wt) (Fig. 1).

The properties were further examined following direct

contact with the inner and outer portions of the prefabricated

composites which were modified using QPEI nanoparticles.

Resin composite incorporating 2% wt/wt QPEI nanoparticles

exhibited antibacterial activity against E. faecalis (Fig. 2). The

addition of 2% wt/wt nanoparticles resulted in total bacterial

inhibition. The antibacterial effect was evident (p < 0.05) in

both test groups of the modified resin composites, i.e.

following direct contact both with the outer and inner disc

surfaces (Fig. 2a and b respectively). SEM and TEM micro-

graphs of E. faecalis showed normally dividing cells with intact

membranes prior to exposure to the QPEI nanoparticles (Fig. 3a

and c, respectively). Bacteria exposed to the nanoparticles

showed distinct morphologic changes, without visible signs of

cell division. Bacterial aggregation, syncytium-like cell wall

fusion and membrane disruption were also evident (Fig. 3b

and d).

XPS analysis of QPEI nanoparticle distribution in the resin

composites showed the presence of I� ions only in the test
Fig. 3 – Bacterial morphologic changes following exposure to Q

resolution SEM at magnifications of 40,000T and 20,000T) (a and

15,000T (c and d). Control E. faecalis cells (panels a and c with n

with intact membranes. Images taken following exposure to QP

aggregation and syncytium-like cell wall fusion (b). Adherence 

morphological changes are also observed (d).

Please cite this article in press as: Shvero DK, et al. Characterisation of the
particle distribution in resin composite. Journal of Dentistry (2014), http:
group with added 2% wt/wt QPEI nanoparticles (Fig. 4).

Nanoparticle distribution was more evident in the inner

surface of the modified resin composite incorporating the QPEI

nanoparticles. Changes in the materials’ degree of conversion

(DC) were recorded using FTIR. QPEI incorporation in resin

composites did not affect the DC: modified and unmodified

resin composites with QPEI nanoparticles showed similar %

DC (Fig. 5).

4. Discussion

In the present study antibacterial properties of resin compos-

ite incorporating QPEI nanoparticles were characterised in

relation to nanoparticle distribution. The QPEI nanoparticles

caused bacterial lysis and produced total bacterial inhibition

when incorporated in the resin composite. These properties

were further tested following direct contact with the inner and

outer surfaces of the composites. Interestingly, total bacterial

inhibition was recorded following direct contact with both the

inner and the outer surface of the modified composite,
PEI nanoparticles. Images were observed using high

 b respectively), and TEM at magnifications of 40,000T and

o added QPEI nanoparticles), show dividing bacterial cells

EI show no visible signs of cell division, with bacterial

of QPEI nanoparticles to bacterial membrane and
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lthough the nanoparticles were distributed to a lesser extent

n the outer surface.

The conventional method for preparing antibacterial mate-

ials is to impregnate them with antibacterial agents that are

radually released over time. However, leaching of the agents

rom the bulk material, and more specifically from dental

aterials, has several disadvantages.17–19 An alternative ap-

roach is the development of macromolecular materials
269
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ig. 5 – Degree of conversion (%DC). Monomer conversion of

he double carbon–carbon bonds was tested in a

omposite resin (3MTM ESPETM FiltekTM Supreme XTE

lowable Restorative) disc incorporating 0% and 2% wt/wt

PEI nanoparticles.

Please cite this article in press as: Shvero DK, et al. Characterisation of t
particle distribution in resin composite. Journal of Dentistry (2014), ht
possessing antimicrobial properties without releasing an agent

into the solution. Insoluble polymeric contact disinfectants may

inactivate or remove target microorganisms by contact without

releasing biocide into the bulk phase.5,20

In the present study a wide range antibacterial effect

against oral pathogens was achieved by incorporating a small

percentage of QPEI nanoparticles in resin composites. More-

over, this effect was long-lasting and caused total bacterial

inhibition of whole saliva bacteria. These results coincide with

previous findings demonstrating QPEI’s excellent antibacterial

activity and long-term durability,21 which is attributable to the

high cationic density on its backbone.8,22

An important parameter that researches on developing

antibacterial dental materials should bear in mind is the effect

of the salivary components on the materials’ surface proper-

ties. Saliva in the oral cavity is adsorbed onto dental surfaces,

and may change the surface–biofilm interaction. Although this

adsorption may potentially mask the functional groups in the

positively charged QPEI nanoparticles, in an in vivo study

nanoparticles incorporated in resin composite have been

shown to cause bacterial death.5 Consequently it may be

suggested that saliva is not a limiting factor for in the

antibacterial effect of the incorporated nanoparticles.

Cationic polymers bearing quaternary ammonium groups

exhibit high antibacterial potency by interacting with and

disrupting the bacterial cell membrane.23 Moreover, when
he antibacterial effect of polyethyleneimine nanoparticles in relation to
tp://dx.doi.org/10.1016/j.jdent.2014.05.003
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these polymers are synthesised as nanosized particles, their

use becomes advantageous, as their surface area is exceed-

ingly outsized relative to their size and scope.13 Thus, only

small amounts of nanoparticles may provide high activity. The

particles are preferably homogeneously distributed in the

dental material in which they are incorporated, generating an

active antibacterial outer surface. Their surface concentration

should be close to 1 particle/sq mm for effective activity

against bacteria, the average size of which is 1 mm3.

Nonetheless, surface modification for production of an

antibacterial effect is not sufficient in the dental environment,

as dental materials are often subjected to wear or degradation

as a result of the harsh oral conditions. Thus, incorporation of

antibacterial nanoparticles into resin composite materials can

be useful in preventing recontamination when the base

material is modified, preserving the antibacterial potency in

the inner portion of material. To test the antibacterial potency

of the inner portion of the modified resin composite

incorporating QPEI nanoparticles, we used E. faecalis, which

is considered a highly resistant oral pathogen.24–26 Although

only a small percentage of nanoparticles was incorporated in

the resin composite, direct contact of E. faecalis with the inner

portion of the material resulted in total bacterial inhibition,

similarly to the outer surface’s effect. Consequently, it is

conceivable that even if the outer surface of modified resin

composite is worn out the antibacterial effect is likely to be

conserved. Further investigation of the effect of QPEI on this

persistent bacterium showed damaged membranes and

various stages of lysis as demonstrated by SEM and TEM.

These findings support the assumption that antimicrobial

polycations are adsorbed onto the bacterial cell surface,

diffuse through the cell membrane, bind to the cytoplasmatic

membrane, release cytoplasmatic constituents such as K+

ions, DNA and RNA and, finally, cause cell death.8,27

Although XPS analysis demonstrated that the QPEI nano-

particles are distributed unevenly, and are more evident in the

inner portion of the material, the antibacterial compound

added here to the resin composite was sufficient to inhibit

bacterial growth. The antibacterial effect was not compro-

mised in the outer surface. The uneven distribution could be

attributed to the manual mixing of the nanoparticles into the

resin composite or to the presence of a polymerisation

inhibition layer often found in resin composites.28 As dental

materials tend to wear out during prolonged usage, the

presence of the antibacterial nanoparticles in the inner layers

is important. One of the most critical aspects of a composite

resin restoration is the polymerisation stage. The %DC has an

important effect on the physical and mechanical properties of

composite resins.29 Here, the %DC was unaffected following

QPEI incorporation. These results lead us to the assumption

that incorporation of a small percentage of QPEI nanoparticles

does not decrease the monomer conversion of the material

and thus will not affect its physical properties.

5. Conclusions

In our investigation, the extent of the antibacterial activity of

modified resin composites incorporating QPEI nanoparticles

was found to be comprehensive, and was evident against all
Please cite this article in press as: Shvero DK, et al. Characterisation of the
particle distribution in resin composite. Journal of Dentistry (2014), http:
the tested oral pathogens, indicating a nonspecific mode of

action. The effect was long-lasting and was conserved in the

inner portion of the modified materials. Thus, even when the

outer surface of the material may be subjected to wear, the

antibacterial effect will be preserved. Quaternary ammonium

polyethyleneimine nanoparticles may be suitable candidates

as additives to resin composite materials in order to endow

their surface with antibacterial activity.
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